Tantárgy neve, kódja: A számítástudomány matematikai alapjai II., GINFBAN-SZAMMAT2-1

Szak neve, képzési szintje: Mérnökinformatikus alapszak, BSc
Tanterv: 2021
Heti órászám (előadás + gyakorlat + labor): 0+2+2
Kreditérték: 5
Elmélet: 0 %
Gyakorlat: 100 %
A tantárgy tantervi helye: 4. félév
Munkarend: Nappali
Előtanulmányi feltételek: A számítástudomány matematikai alapjai I. + Analízis I.
Értékelés: kollokvium
Tantárgy besorolása: Kötelező
Oktatás nyelve: Magyar
Tantárgyfelelős: Dr. Végh Attila
Felelős tanszék: Alaptudományi Tanszék
Tantárgy oktatója(i): , Bársony István, Dr. Végh Attila
Ellenőrzésért felel: Halczman Szilvia Lídia
Tárgy oktatásának célja:
A hallgatók megismerkedjenek a felsőbb matematika (számelmélet, algebra) alapfogalmaival és annak módszereivel, valamint alapvető ismereteket szerezzenek a kriptográfia, hibajavító kódok további tanulmányozásához.
Elsajátítandó ismeretanyag gyakorlat:

Bevezetés a számelméletbe. Oszthatóság. A számelmélet alaptétele. Diophantoszi egyenletek. Kongruenciák, maradékosztályok. Lineáris kongruenciák megoldhatósága. Euklideszi algoritmus. Kis-Fermat tétel, Euler-Fermat tétel. Kriptográfia alapjai, nyilvános kulcsú titkosítás, RSA-algoritmus. Prímszámok, prímtesztelés. Absztrakt algebrai alapfogalmak. Részcsoport, Lagrange tétel. Permutációcsoportok, csoportok megadása. Direkt-szorzat, Abel-csoportok. Gyűrűk, testek, véges testek. Polinomok, irreducibilis polinomok. Véges test feletti polinomok, prímhatvány rendű véges testek. Kódolási alapfogalmak, hibajavító kódok. Bináris lineáris és Hamming kódok. Lineáris kódok, Hamming kódok. Reed-Solomon kódok, ciklikus kódok, BCH kódok.


Elsajátítandó ismeretanyag laboratórium:

Bevezetés a számelméletbe. Oszthatóság. A számelmélet alaptétele. Diophantoszi egyenletek. Kongruenciák, maradékosztályok. Lineáris kongruenciák megoldhatósága. Euklideszi algoritmus. Kis-Fermat tétel, Euler-Fermat tétel. Kriptográfia alapjai, nyilvános kulcsú titkosítás, RSA-algoritmus. Prímszámok, prímtesztelés. Absztrakt algebrai alapfogalmak. Részcsoport, Lagrange tétel. Permutációcsoportok, csoportok megadása. Direkt-szorzat, Abel-csoportok. Gyűrűk, testek, véges testek. Polinomok, irreducibilis polinomok. Véges test feletti polinomok, prímhatvány rendű véges testek. Kódolási alapfogalmak, hibajavító kódok. Bináris lineáris és Hamming kódok. Lineáris kódok, Hamming kódok. Reed-Solomon kódok, ciklikus kódok, BCH kódok.

Elsajátítandó szakmai kompetenciák (tudás, képesség, attitűd, autonómia és felelősség, további szakmai kompetenciák):
Tudása:

képességei- Felhasználja az informatikai szakterületének műveléséhez szükséges természettudományi elveket és módszereket (matematika, fizika, egyéb természettudományok) az informatikai rendszerek kialakítását célzó mérnöki munkájában.

Képességei:

tudása- Ismeri az informatikai szakterületének műveléséhez szükséges természettudományi elveket és módszereket (matematika, fizika, egyéb természettudományok).

Attitűdje:

- Törekszik a hatékony és minőségi munkavégzésre.

Autonómia és felelősség:


További szakmai kompetenciák:

- digitális technológia hatékony alkalmazása, tanulási célok elérését szolgáló digitális megoldások ismerete

A számonkérés és értékelés rendszere:
Félévközi tanulmányi követelmények:
Jelenléti oktatás esetén: A félév során 3 zárthelyi dolgozat megírására kerül sor 20-20-20 pont értékekben. Két dolgozat megírása a gyakorlaton történik, 3. dolgozat megírása számítógépteremben laboron lesz. A 30 pontot el nem érő hallgatóknak lehetősége van javító dolgozat megírására. A vizsgára bocsátás feltételei: A gyakorlatokon való részvétel és a félév során (a megírásra kerülő zárthelyi dolgozatok + órai munka eredményeképp) legalább 30 pont elérése.
Vizsgakövetelmények:

Jelenléti oktatás esetén: Az írásbeli vizsgán egy 40 pontos dolgozat megírására kerül sor. A vizsgajegy a gyakorlatokon szerzett maximális 60 pont és a vizsgán szerzett maximális 40 pont összegeként a TVSZ 17. § szerint alakul.

Tanulmányi segédanyagok, laborháttér:

Elektronikus segédlet, számítógépes labor.

Kötelező irodalom:

[1] Györfi L.-Győri S.- Vajda I.: Információ-és kódelmélet, Typotex Kiadó, Budapest, 2010., ISBN: 978-963-2791-15-9

Ajánlott irodalom:

[1] Szendrei Á.: Diszkrét matematika. Polygon Jegyzettár, Polygon, Szeged, 2004. [2] Katona Y. Gy. – Recski A. – Szabó Cs.: A számítástudomány alapjai. TypoTEX Kiadó, 2007., ISBN 978 963 9326 24 8 [3] Ralph P. Grimaldi: Discrete and Combinatorial Mathematics, Pearson New International Edition. Pearson, 5th edition (2013), ISBN: 978-1292035994 "