Analízis I. (GINFBAN-ANALIZI1-1)
Alapadatok
Oktatók
Tantárgy célja
A tantárgy oktatásának célja, hogy a hallgatók megismerkedjenek a informatikai terület tanulmányozásához szükséges felsőbb matematika (lineáris algebra és analízis) alapfogalmaival, módszereivel és az ezekhez kapcsolódó szakkifejezésekkel, összefüggésekkel, tételekkel.
Elsajátítandó ismeretanyag
Előadás
Háromdimenziós vektorok. Vektoralgebra. Lineáris egyenletrendszerek megoldása. Mátrixok, mátrixok szorzása, inverze, rangja, determináns fogalma. Lineáris transzformáció, sajátérték, sajátvektor. A komplex számtest. A komplex számok alakjai. Műveletek komplex számokkal: hatványozás, gyökvonás. Végtelen számsorozatok és azok tulajdonságai. A konvergencia fogalma. Nevezetes határértékek. Egyváltozós függvények. Az elemi függvények tulajdonságai. Függvény határértéke, folytonossága. Egyváltozós függvények differenciálszámítása. A differenciálszámítás alkalmazásai: L’ Hospital-szabály, teljes függvényvizsgálat. Lokális és globális szélsőértékek, szöveges szélsőérték feladatok.
Gyakorlat
Háromdimenziós vektorok. Vektoralgebra. Lineáris egyenletrendszerek megoldása. Mátrixok, mátrixok szorzása, inverze, rangja, determináns fogalma. Lineáris transzformáció, sajátérték, sajátvektor. A komplex számtest. A komplex számok alakjai. Műveletek komplex számokkal: hatványozás, gyökvonás. Végtelen számsorozatok és azok tulajdonságai. A konvergencia fogalma. Nevezetes határértékek. Egyváltozós függvények. Az elemi függvények tulajdonságai. Függvény határértéke, folytonossága. Egyváltozós függvények differenciálszámítása. A differenciálszámítás alkalmazásai: L’ Hospital-szabály, teljes függvényvizsgálat. Lokális és globális szélsőértékek, szöveges szélsőérték feladatok.
Szakmai kompetenciák
Tudás
tudása - Ismeri az informatikai szakterületének műveléséhez szükséges természettudományi elveket és módszereket (matematika, fizika, egyéb természettudományok).
Képesség
képességei
Attitűd
- Törekszik a hatékony és minőségi munkavégzésre.
Autonómia és felelősség
További szakmai kompetenciák
- digitális technológia hatékony alkalmazása, tanulási célok elérését szolgáló digitális megoldások ismerete
Számonkérés és értékelés
Félévközi követelmények
Két nagy zárthelyi dolgozat 50-50 pont értékben. A zárthelyi dolgozatok a 13. héten javíthatók, pótolhatók. Online oktatás esetén a dolgozatok szóbeli ellenőrzéssel egészülnek ki.
Vizsgakövetelmények
Nincs vizsga.
Generatív MI használata
Nincs megadva
Irodalom
Kötelező irodalom
"[1] Kovács József, Takács Gábor, Takács Miklós: Analízis, Nemzeti Tankönyvkiadó, 2012., ISBN 9789631954913[2] Urbán János: Határérték-számítás, Műszaki Könyvkiadó, Budapest, 2009, ISBN: 9789631630725[3] Frank R. Giordano, Joel Hass, Maurice D. Weir, George B. Thomas: Thomas-féle kalkulus 1., Typotex Kft., 2015. ISBN: 978-963-2798-34-9"
Ajánlott irodalom
[1] Scharnitzky Viktor: Matematikai feladatok, Nemzeti Tankönyvkiadó, Budapest, 1998., ISBN 963 18 7424 9 [2] George B. Thomas, Maurice D. Weir, Joel Hass, Frank R. Giordano: Thomas' Calculus, Pearson, 2014, ISBN-13: 978-0321878960 [3] https://moodle.nje.hu/course/view.php?id=287 [4] https://moodle.nje.hu/course/view.php?id=288 [5]https://moodle.nje.hu/course/view.php?id=270 [6] https://moodle.nje.hu/course/view.php?id=184